
Forward-only Simulation for Agent Search

GIT-GVU-08-01

Andrew Cantino
College of Computing

Georgia Institute of
Technology

cantino@gmail.com

Greg Turk
College of Computing

Georgia Institute of
Technology

turk@cc.gatech.edu

Charles Isbell
College of Computing

Georgia Institute of
Technology

isbell@cc.gatech.edu

ABSTRACT
We present work on optimization search in a domain where ran-
dom restarts are unavailable, a property of many real-world prob-
lems. In particular, we present a new technique for planning and
control of agents that have high degree-of-freedom manipulators
such as octopus tentacles. The specific type of manipulator that we
investigate is known as a muscular hydrostat. A challenge for creat-
ing agents that use such manipulators is finding appropriate control
parameters to move the end effector to a goal position in a clut-
tered environment. We physically model hydrostats as collections
of masses, springs, and muscles, and perform goal-seeking through
optimization over muscle parameters. We introduce a method of
optimization called minima filling, a general approach that success-
fully finds a global minimum without the use of random restarts
and through only incremental, stochastic movements. Using min-
ima filling as a base, we construct probabilistic roadmaps (PRMs)
and use them to navigate a simulated muscular hydrostat around
obstacles in cluttered environments.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search; I.2.9 [Artificial Intelligence]: Robotics—Manipula-
tors, Kinematics and dynamics; I.6.8 [Simulation and Modeling]:
Types of Simulation—Animation

General Terms
random restarts, search, optimization, forward simulation, muscu-
lar hydrostats

1. INTRODUCTION
In many scenarios, an agent must optimize or search through a
space of solutions. Often, however, due to the nature of the domain,
only forward simulation from a known configuration is possible,
thus ruling out the use of random restarts, the basis of most stochas-
tic optimization techniques. Examples of real-world problems in
this class include motion planning for high degree-of-freedom (DOF)
manipulators; path planning for embodied agents that have esti-

mated distances to goal, but no overhead world-views1; and the
design of complex, physically simulated systems where no closed-
form solution is available, such as bridge and airfoil design.

We are interested in studying optimization and search in this class
of problems. Consider the many movies and video games that in-
clude animations of creatures with tentacles such as octopi, robots
or space aliens. To the best of our knowledge, all current planning
for animation of tentacle-like manipulators is done by a human ani-
mator. We would like to construct an agent that can generate anima-
tions of tentacle motion in a possibly cluttered space with minimal
human intervention.

Our goal is to find the appropriate control parameters to move a
tentacle end-effector from a starting position to a goal position in
a cluttered environment. An animator should be able to specify
high-level goals for an agent, such as instructing a virtual octopus
to reach for a fish that is trying to hide in a small rock cave. The
nature of this problem, discussed below, does not allow for random
restarts, as we can only achieve plausible tentacle configurations
through forward simulation.

While our interest is in controlling virtual agents such as charac-
ters for animation, our results for this problem are directly appli-
cable to agents with high degree-of-freedom manipulators in other
domains, such as robotics. Additionally, our solution to this search
problem is general and is applicable to other agent simulation prob-
lems where random restarts are unavailable.

Figure 1: A simulated muscular hydrostat.

In this paper, we model a class of prototypical high DOF manipu-
lators called muscular hydrostats: constant volume, extremely high
DOF dexterous manipulators that lack skeletal structure, such as
mammalian tongues, elephant trunks, and octopus tentacles. We
use a physics-based mass-spring model (see Figure 1) where mus-
cle contraction and expansion is simulated through variation of
spring rest lengths. The physical model additionally incorporates
1In the case of an embodied agent, random restarts are arguably
equivalent to the agent teleporting around its world.

constraint forces to meet the muscular hydrostat constant volume
assumption. The high DOF of our simulated tentacles combined
with a cluttered landscape of obstacles, results in a very high di-
mensional configuration space (C-space), necessitating the use of
local optimization and search algorithms to control the tentacle
motion. As we can only achieve plausible tentacle configurations
through forward simulation, random restarts are unavailable. Thus,
many standard optimization techniques are unsuitable and we fall
in the class of problems mentioned above.

Our main contribution is an optimization method that escapes lo-
cal minima by modifying the optimization landscape to reduce, or
“fill”, minima, avoiding the need for random restarts and taking
only incremental steps through C-space. This technique is applica-
ble to problems in our domain of interest. Our second contribution
is an application of probabilistic roadmaps (PRMs) that avoids ex-
plictly computing all free paths between waypoints in order to do
motion planning. Using our techniques, we are able to use a mod-
ified version of A* search to traverse the roadmap and maneuver a
tentacle around obstacles in real time. We demonstrate the efficacy
of our approach on simulated muscular hydrostats with 33 degrees
of freedom in cluttered 2D environments.

2. MUSCULAR HYDROSTATS
The octopus tentacle is the canonical example of a muscular hydro-
stat, first termed as such by Kier and Smith [12]. Unlike the bone-
supported arms of vertebrates, octopus tentacles are completely
supported by their internal musculature. Every point along an oc-
topus’s arm can bend in any direction, twist, expand, and contract
[8] by taking advantage of the muscle tissue’s low compressibil-
ity and a combination of lateral, transverse, and oblique muscles
[19]. Because of the constant volume constraint imposed by the tis-
sue’s low compressibility, contraction of muscles in one direction
causes expansion or bending in perpendicular directions. Further
detail about octopi is beyond the scope of this paper. We refer the
interested reader to Yekutieli et al. [22] for an excellent general
overview of recent research on octopus locomotion.

Previous work exists on the simulation of muscular hydrostats and
their cousins hydrostatic skeletons. Hydrostatic skeletons are in-
compressible fluid-filled skeletons found in creatures such as worms
and leeches. They differ from muscular hydrostats in that they
use incompressibility of fluid as opposed to incompressibility of
muscle tissue as their means of support. Alscher and Beyn [1]
model leech motion by modeling the motion of connected constant-
volume hexahedral segments made of springs. More recently, Yeku-
tieli et al. [20, 21] modeled octopus tentacles similarly as con-
nected constant-volume segments, and were able to reproduce stereo-
typed reaching movements characteristic to the octopus. While our
model is similar to that of Yekutieli et al., we further extend pre-
vious work by exploring non-biologically inspired motions and by
using the model to facilitate an investigation of high DOF motion
control and optimization.

As Figure 2 shows, we model tentacles as a series of connected
segments, each with its own area, four associated muscles, and
point masses. The two top and bottom muscles are unique to a
segment, while the left and right muscles, and all point masses,
are shared with the segment’s neighbors. Additionally, each tenta-
cle segment contains two non-actuated diagonal cross springs for
support against shearing. See Figure 1 for an example of an 11-
segment tentacle.

Figure 2: Tentacles are modeled as a series of connected seg-
ments, each with its own area, four associated muscles, and
point masses. Additionally, each tentacle segment contains two
non-actuated diagonal cross springs for support against shear-
ing.

Each muscle is a spring governed by Hook’s Law, or F = −kx,
where k is the spring constant and x is the spring’s displacement
from its natural rest length. To cause muscle actuation, the spring’s
rest length is arbitrarily modified by an activation factor that can be
either positive or negative:

F = −k(Length − RestLength −Activation) (1)

Muscular hydrostats have a constant volume constraint imposed by
the incompressibility of muscle tissue. To enforce this constraint,
we apply restorative forces when a segment’s area deviates from
its starting area, or rest area. This restorative force is calculated as
follows. Every segment records its area when first created. During
simulation, the area constraint force on a given segment face (a, b,
c, or d) is then found according to Equation 2, always acting normal
to the given segment face2. In Equation 2, A is the current area of
the segment, R is its rest area, V is an area constraint constant, and
L is the length of the segment face whose force we are calculating.

F = −(A − R)V L (2)

The simulator uses a 4th order Runga-Kutta integrator to numer-
ically solve the interaction dynamics for all instantiated masses
and springs on every time step. Additionally, we perform dynamic
time-stepping. Each iteration, the integrator solves one full step
and two half steps and compares the results. If they differ by more
than a predefined threshold, the time step is geometrically reduced
for the next iteration, and the double half-step result is kept. Oth-
erwise, the time step is increased for the following iteration. When
the integrator is doing well, time step size increases, allowing for
faster simulation, and when the integrator performs poorly, time
step size decreases until simulation accuracy improves sufficiently.

3. GOAL SEEKING
Our initial goal for motion control is to have the simulated ten-
tacle reach for and touch a target. A tentacle, t, is represented
as an n-dimensional vector of muscle activation parameters. Note
2As forces can only be applied to masses in the actual simulation,
the force at each mass is approximated as the vector average of the
forces on its neighboring sides.

that we cannot use inverse kinematics to position the end effec-
tor because the angles between segments are determined indirectly
through simulation based on muscle activation. We define a cost
function C(t) that maps an n-DOF tentacle t ∈ Rn to a scalar:

C(t) = c1|g − ĝ|2 + c2|v|2 + c3

p
|t− trest| + c4m(t) (3)

Our actual form of C(t), shown in Equation 3, is a heuristically-
defined linear combination of the distance from the tentacle end-
point ĝ ∈ R2 to a goal position g ∈ R2; the velocity of the end-
point (we prefer tentacle configurations with lower endpoint veloc-
ities over configurations with large velocities); a smoothness term
defined in terms of the deviation of every muscle parameter from its
rest length; and a minima-filling term m that we describe shortly.
In this equation, v is the velocity of ĝ at the time that C(t) is evalu-
ated, trest is t in its most relaxed configuration with all muscles at
their rest lengths, and c1, c2, c3, and c4 are free parameters weight-
ing the linear combination. Notice that with c1 large, g is near the
global minimum of C(t).

To find a tentacle configuration with a particular end position, we
use stochastic descent. We start from an initial tentacle configura-
tion t, and repeatedly check to see if Sim(t + ε) results in a lower
cost than t, where ε ∈ Rn is a short randomly-generated vector
for perturbation, and Sim() represents forward simulation for a set
number of time steps. We transition to any lower cost configura-
tions that we find.

3.1 The Problem of Local Minima
Stochastic descent quickly decends into a local minimum. Unfortu-
nately, that local minimum may be far away from our goal position
g. Because stochastic descent only takes transitions that result in
lower cost, it cannot find its way out of these minima. A common
remedy for this problem uses random restarts3: whenever a min-
imum is detected by a long sequence of failed transitions, a ran-
domly generated t is created and stochastic descent restarts from
there. Unfortunately, we can only achieve a tentacle t by simulat-
ing from an initial configuration, so we cannot use random restarts.

3.2 Minima Filling
We now present our method of minima filling. We initially start in
a base tentacle configuration with all muscles at their rest length.
Given a goal position g, we use stochastic descent over Equation 3
until we reach a minimum, as determined by failure to find a t + ε
that results in a lower cost configuration after transitionmax at-
tempts. If our current tentacle endpoint ĝ is not within a minimum
distance of the goal g, we determine that we are stuck in a local
minimum and we place a minimum fill point at ĝ. A minimum fill
point is a heuristically-defined function with a steep falloff that acts
to “fill up” a local minimum. We incorporate minimum fill points
into C(t) through the m(t) term in Equation 3:

m(t) =

NX
i=1

1

|ĝ − pi|4
(4)

where N is the total number of minimum fill points that have been
used, ĝ is again the tentacle endpoint, and pi ∈ Rn is the ith fill
point.

3We will discuss the use of simulated annealing as another alterna-
tive later.

The net result of creating minimum fill points when a local mini-
mum is detected is to modify the cost space such that the space near
the minimum is now unattractive. Although it could take multiple
fill points to fill a local minimum, the technique eventually allows
stochastic descent to continue. Our technique takes advantage of
the fact that in our problem, we can tell when we have not yet
reached the global minimum, informing us that continued search
is needed. Of course, this is not generally true; however, even in
cases where we are not sure if we have achieved a global minimum,
we can apply this technique simply by remembering the best min-
ima we have seen so far and by using some other criterion to halt
search.

Figure 3: Tentacle (faded) stuck in a local minima, and then
reaching goal after dropping minima fill points. Round obsta-
cles clutter the 2D space.

In our problem, local minima are primarily the result of obsta-
cles placed in the environment that create implicit barriers in cost
space by disallowing some tentacle configurations. Figure 3 shows
a (faded) tentacle stuck in a local minimum created by a concav-
ity between obstacles. It also shows the same tentacle success-
fully reaching the goal after creating three fill points. As this is a
stochastic approach, some runs take deployment of more or fewer
fill points before the goal is reached. The cost-space modification
approach of using minimum fill points is successful at solving most
optimization landscapes that we encounter with our tentacle simu-
lations. As we shall see, it also acts as the necessary preliminary
step for construction of probabilistic roadmaps.

4. ROADMAP CONSTRUCTION
One of the applications we are interested in solving is animation:
we wish to create smooth animations of the tentacle navigating a
cluttered space in real time. Our minima-filling technique is gen-
erally successful at moving a tentacle from a starting configuration
to a configuration that touches a goal point; however, execution
is time-consuming and the resulting search trajectory involves ex-
ploration of many successive local minima. As a result, it is most
useful to think of the search as providing a target configuration, not
an animation of the tentacle moving between start and goal config-
urations.

Because of these limitations, we use our minima-filling technique
as a preprocessing step to build a probabalistic roadmap (PRM) for
a particular cluttered environment. PRMs are a path planning tech-
nique where a pre-processing stage generates a map of transitions

among collision-free configurations in C-space, and an online stage
returns valid paths among query configurations at runtime. PRMs
are often used because complete motion planning is believed to be
PSPACE-hard[11].

We first sample the C-space by randomly picking goal points and
using minima filling to reach each goal in turn. For each goal, we
store in a roadmap samples of intermediate configurations and the
final configuration that reaches the goal. We use a slightly modified
version of A* search to do path planning on this roadmap.

Typically, roadmaps are graphs where any two points (configura-
tions) are connected if a collision-free path exists between them.
Determining collision-free connections is computationally expen-
sive even when dynamics are known and can be solved in closed
form. In our case, we would have to simulate between every pair
of neighboring points to determine connectivity. Due to the com-
putational complexity of this task, we choose instead to use an ap-
proximation of PRMs in which pairs of configurations are assumed
connected if both their endpoints are close together in R2 and their
tentacle space representations are close together in Rn (that is, they
have |t1 − t2| as small as possible).

We define a roadmap node’s neighborhood as the k (= 20 for
our work) configurations whose endpoints are closest to the query
node’s, and for which a transition from the query node to the neigh-
borhood node would not directly cause the tentacle to pass through
an obstacle. This is partial collision detection: it avoids configura-
tions that are similar in Rn but for which a transition would directly
impinge upon an obstacle. We do this by checking that the line be-
tween every mass in tentacle one does not pass through an obstacle
on the way to its corresponding mass in tentacle two. Note that
this will fail to detect when a transition from one configuration to
another is impossible because the tentacle becomes caught on an
obstacle, even though it does not actually pass through it.

Given the neighborhoods defined above, we use A* search to per-
form path planning, and we interpolate tentacles between search
nodes. We define our A* path cost as TotalCostSoFar +
EuclideanDistToNextNode2 + C ∗ |t − tnextnode|2, where
C is a free parameter.4 To be complete, A* requires a heuristic
function that consistently underestimates the distance to goal. Our
heuristic is admissible because the sum of the squares of the tenta-
cle similarities over the complete sequence of tentacles followed by
A* will always be larger than the similarity of the current tentacle
to the tentacle closest to the goal.

5. RESULTS
We compare the effectiveness if our minima-filling technique to
stochastic hill climbing using the obstacles shown in Figure 3. Our
minima-filling technique successfully reaches a randomly selected
goal point from a randomly selected start point 82.8% of the time.
Compare this to 52.8% of the time for stochastic hill climbing5.
The times when minima filling failed can partially be attributed
to having a limited number of simulation cycles available, as both
RHC and minima filling were capped at a maximum number of cy-
cles. When the maximum number of allowed cycles is increased
100x and the maximum number of fill points is increased 10x, we

4In some experiments we use a slightly different, but still admissi-
ble, heuristic.
5Both RHC and minima filling success rates were calculated as the
average of 180 trials.

see the success rate of our minima filling technique increase to
98.4% out of 126 trials. Stochastic hill climbing will not do better
with increased time, as it still quickly falls into a local minimum.

Figure 4: The fraction of successful roadmap traversable paths
as a function of roadmap size.

As Figure 4 shows, increased roadmap size leads to higher chances
of successful traversal. For each roadmap size, we generated and
checked roadmap traversals for many random start and end points
for which a straight-line trajectory would impinge on an obstacle.

Figure 5: This figure depicts tentacle configurations near the
beginning and near the end of a PRM-generated motion path.
The dashed line shows the predicted path based on the PRM
nodes, while the solid path shows the actual path of the tentacle
endpoint.

Figure 5 shows the result of running PRM path generation. The two
tentacles shown are configurations found near the beginning and
end of the path. The dashed line shows the predicted path based
on the locations of the PRM nodes and the solid line shows the
actual path taken by the tentacle endpoint. While not as smooth as
the predicted path, this path is much smoother than what would be
generated by a stochastic minima-filling search for the goal. Once
we have a populated PRM, about 2-3 seconds are required for A*
to generate a path similar to the one seen in Figure 5 on a modern
PC.

6. RELATED WORK

In this section we discuss existing work in stochastic optimization,
high degree-of-freedom manipulators in robotics, and probabilistic
roadmap construction.

6.1 Stochastic Optimization
The literature on optimization methods is vast, and it is well beyond
the scope of this paper to do it proper justice. Many techniques
require gradients to operate. As our function is difficult to differ-
entiate (due to the area constraint force), and empirically sampling
the gradient is computationally infeasible, as every sample must be
forward simulated from the current position, we use stochastic op-
timization. In particular, we use stochastic hill climbing, combined
with a method of minima filling.

To our knowledge, existing research in this area explores two ba-
sic directions: spaces with differentiable cost functions, and spaces
where large steps can be taken. Typical methods with differentiable
cost functions are Bridging [15] and the use of Filled Functions [16,
23, 14]. Filled Functions successively generate new cost functions
where minima have been turned into maxima. These approaches
do not work for us because of the requirements of our domain. Our
approach is actually most like variations on Tabu search [7] for con-
tinuous domains [17, 4]. Tabu search is a metaheuristic search that
remembers where it has been and uses cycles of intensification and
diversification to find good solutions.

Our approach is different from continuous modifications of Tabu
search in a number of ways. First, we explicitly modify the cost
landscape to fill minima. Second, we do not need to maintain ex-
plicit Tabu lists because we implicitly memorize explored regions
of the space by filling minima. Third, Tabu search revisits loca-
tions in the intensification phase and when aspiration criteria are
met, while we never have to explicitly revisit regions. Instead, we
revisit regions if we fall back into them because they have not been
completely filled by minimum fill points. Finally, we do not need to
make large transitions in state space (e.g. random restarts)—and, in
fact, we cannot—while Tabu search sometimes jumps around dur-
ing the intensification phase.

Another popular stochastic search technique worth mentioning here
is simulated annealing. In simulated annealing, search is allowed
to probabilistically take locally “bad” steps. It has proven a power-
ful theoretical and practical technique. Although we do not report
in detail here, we found empirically that simulated annealing per-
forms poorly in our domain, even when run for a large number of
iterations and with a slow cooling cycle. We conjecture that our
cost landscape is full of shallow bumps, and that each bump pro-
vides a great deal of information. Therefore, it is best to follow a
gradient all the way to its local minima before dismissing it.

An alternative stochastic search technique is MIMIC [3] and related
families of algorithms. These techniques attempt to characterize
the entire cost space with a probability distribution, successively
refining that distribution until only “good” solutions are probable.
Typically, these distributions are represented by dependency trees
or other parametric functions. One could view the minima fillers as
non-parametric representations of such distributions, where each
filler warps the probability space around it. This approach gener-
alizes less well across the space, but may be better able to capture
the local nature of obstacles, at least insofar as locality in C-space
and Euclidean space are related.

6.2 Robotics and Path Planning

Although the robotics community has explored tentacle-like de-
signs for robots, most of these hyper-redundant robots are not mus-
cular hydrostats, as current technological limitations require bone-
like structures. Chirikjian and Burdick [5] created a kinematic
model for hyper-redundant manipulators in which the manipulator
is treated as a “backbone curve” that captures the basic shape of the
robot. Hannan and Walker [9] built a robotic “elephant trunk”, and
developed motion planning and control algorithms for it by approx-
imating its four 2-DOF sections as having constant curvature. That
is, each section is treated as an arc. Due to coupling springs be-
tween each section, it acts as if it has 33 degrees of freedom. Given
the assumption of constant curvature, Hannan and Walker are able
to derive closed form kinematic equations and use them for motion
planning. We take a more computationally intensive approach but
make no simplifying shape assumptions, optimizing directly on the
hydrostat’s muscle parameters. There has also been a large amount
of research on serpentine robots, for example [10]. With serpen-
tine robots, the body follows the same path as the head. This is not
generally true with our tentacle model.

In general, the computational complexity that we encountered when
building our roadmaps is a common issue with PRMs. For a good
overview of methods for making PRMs tractable in high dimen-
sions, see [6]. Our PRMs are relatively primitive by modern stan-
dards, and we present them primarily as an application for our
muscular hydrostat motion control problem. There are a number
of existing results that could help improve our techniques. Lazy
PRM [2], which assumes roadmap paths are clear when building
the PRM, and tests paths only as needed, could be used to test
node connectivity at runtime. This would avoid our sometimes-
ineffective assumption that similar configurations are traversable.
Additionally, the work by Song et al. [18] in roadmap refinement
at runtime could also increase performance. Some work has been
done toward PRM optimization [6]. Our PRM generation methods
use simple random sampling, and could benefit from the work of
[13] into rapidly-exploring random trees.

7. DISCUSSION
This research addresses an example of a class of problems in which
an agent is embodied, as with a robot, or is expensively simulated,
as with our tentacle models. In these types of problems, random
restarts are not available. We have shown that our minima filling
technique works well in one such domain, and we believe that it
will prove beneficial for exploration or optimization in other prob-
lems of this class. In future work, we would like to apply our min-
ima filling technique to other domains where expensive simulation
is required.

In this paper, we present work into simulation and motion control
for muscular hydrostats: constant volume, extremely high degree-
of-freedom dexterous manipulators, of which octopus tentacles are
an example. We seek to minimize the hydrostat’s endpoint distance
to a goal point in a cluttered environment. We use a method of
minima filling that modifies our cost space so that a stochastic de-
scent algorithm can escape local minima incrementally. We find
that this technique significantly improves the performance of stan-
dard stochastic gradient descent on our problem domain.

Building upon our minima filling technique, we construct a proba-
bilistic roadmap to enable rapid tentacle motion planning. Our do-
main is difficult because we cannot determine collisions without the
use of expensive forward simulation, so we assume that tentacles
with similar tentacle-space configurations and similar endpoints are

connected and we perform A* motion planning over these neigh-
borhoods.

A number of methods for improving our PRM generation and uti-
lization are available as detailed in section 6.2. Most prominently,
Lazy PRM could be used to test roadmaps at runtime and back-
tracking could be employed when collisions are detected so that a
new roadmap route can be tried. Once a clear path is found, a final
motion can be generated.

Additionally, future research should compare minima filling di-
rectly to implementations of continuous Tabu search and other sim-
ilar optimization methods in domains where random restarts are
available.

8. REFERENCES
[1] C. Alscher and W.-J. Beyn. Simulating the motion of the

leech: A biomechanical application of daes. Numerical
Algorithms, 19:1–12, 1998.

[2] R. Bohlin and L. E. Kavraki. Path planning using lazy prm.
In Proc. IEEE Int. Conf. on Robotics & Automation, 2000.

[3] J. D. Bonet, C. Isbell, and P. Viola. Mimic: Finding optima
by estimating probability densities. In Advances in Neural
Information Processing Systems, volume 9, 1997.

[4] R. Chelouah and P. Siarry. Tabu search applied to global
optimization. European Journal of Operational Research
123/2 Special issue on combinatorial optimization, pages
30–44, 2000.

[5] G. S. Chirikjian and J. W. Burdick. A model approach to
hyper-redundant manipulator kinematics. IEEE Transactions
on Robotics and Automation, 10(3), 1994.

[6] L. K. Dale. Optimization Techniques for Probabilistic
Roadmaps. PhD thesis, Texas A&M University, 2000.

[7] F. Glover. Tabu search: A tutorial. Interfaces, 20:74–94,
1990.

[8] Y. Gutfreund, T. Flash, Y. Yarom, G. Fiorito, I. Segev, and
B. Hochner. Organization of octopus arm movements: A
model system for studying the control of flexible arms. The
Journal of Neuroscience, 16(22):7297–7307, 1996.

[9] M. W. Hannan and I. D. Walker. The ’elephant trunk’
manipulator, design and implementation. IEEE/ASME
International Conference on Advanced Intelligent
Mechatronics Proceedings, page 14, 2001.

[10] W. Henning, F. Hickman, and H. Choset. Motion planning
for serpentine robots. Proceedings of ASCE Space and
Robotics, 1998.

[11] Y. K. Hwang and N. Ahuja. Gross motion planninga survey.
ACM Computing Surveys, 24:219 – 291, 1992.

[12] W. Kier and K. Smith. Tongues, tentacles and trunks: The
biomechanics of movement in muscular-hydrostats.
Zoological Journal of the Linnean Society, 83:307–324,
1985.

[13] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. In Proceedings IEEE International Conference on
Robotics and Automation, pages 473–479, 1999.

[14] X. Liu. Finding global minima with a computable filled
function. Journal of Global Optimization, 19:151–161, 2001.

[15] Y. Liu and K. L. Teo. A bridging method for global
optimization. Journal of Australian Mathematical Society
Series B, 41:41–57, 1999.

[16] G. Renpu. A filled function method for finding a global
minimizer of a function of several variables. Mathematical
Programming, 46:191–204, 1990.

[17] P. Siarry and G. Berthiau. Fitting of tabu search to optimize
functions of continuous variables. Intr. Journal for
Numerical Methods in Engineering, 40:2449–2457, 1997.

[18] G. Song, S. Miller, and N. M. Amato. Customizing prm
roadmaps at query time. In Proc. IEEE Int. Conf. on
Robotics & Automation, pages 1500–1505, 2001.

[19] I. D. Walker, D. M. Dawson, T. Flash, F. W. Grasso, R. T.
hanlon, B. Hochner, W. M. Kier, C. C. Pagano, C. D. Rahn,
and Q. M. Zhang. Continuum robot arms inspired by
cephalopods. In Proceedings of SPIE, volume 5804, pages
303–314, 2005.

[20] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel,
B. Hochner, and T. Flash. Dynamic model of the octopus
arm. i. biomechanics of the octopus reaching movement.
Journal of Neurophysiology, 94:1443–1458, 2005.

[21] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel,
B. Hochner, and T. Flash. Dynamic model of the octopus
arm. ii. control of reaching movements. Journal of
Neurophysiology, 94:1459–1468, 2005.

[22] Y. Yekutieli, G. Sumbre, T. Flash, and B. Hochner. How to
move with no rigid skeleton? the octopus has the answers?
Biologist, 49(6), 2002.

[23] L.-S. Zhang, C.-K. Ng, and D. L. andWei Wen Tian. A new
filled function method for global optimization. Journal of
Global Optimization, 28:17–43, 2004.

