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ABSTRACT

In this paper, we address the problem of building a system of au-
tonomous agents for a complex environment, in our case, a mu-
seum with many visitors. Visitors may have varying preferences
for types of art or may wish to visit different exhibits on multiple
visits. Often, these goals conflict. For example, many visitors may
wish to see the museum’s most popular work, but that could cause
congestion, ruining the experience. Thus, our task is to build a set
of agents that can satisfy their visitors’ goals, while simultaneously
providing high quality experiences for all.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents; G.3 [Probability and Statistics]: Markov pro-
cesses

General Terms

Algorithms, Measurement, Design

Keywords

Markov decision processes, interactive entertainment

1. INTRODUCTION

In this paper, we discuss the creation of a system of interactive
agents that gently guide visitors through engaging experiences in
complex social environments. Specifically, we consider tour guides
for visitors to a museum. Museums are an interesting test bed be-
cause of their size, complexity of layout, the number of simulta-
neous visitors, and the variety of goals these visitors may pursue.
Generally, there is insufficient time to see the whole museum dur-
ing any given visit, so many guests may be repeat visitors who are
trying to see previously unseen collections.

We consider a scenario where each group of museum visitors is
given a small handheld device, such as a PDA, that will interac-
tively guide them through the museum by suggesting actions that
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they might take. We describe a system that satisfies visitor goals
while avoiding congestion and thus preserving the quality of expe-
rience for all.

We use Targeted Trajectory Distribution Markov decision pro-
cesses (TTD-MDPs) [8]. TTD-MDPs are a class of Markov de-
cision processes originally developed for coordinating agents en-
gaged in interactive entertainment [4].

2. TTD-MDPS

A TTD-MDP is a tuple < 7, A, P, P(T) >, with states 7 that
are finite-length trajectories of MDP states (possibly including a
history of actions as well), a set of actions A, a transition model
P, and a target distribution over complete trajectories P(7"). The
solution to a TTD-MDP is a policy 7 : 7 — P(A) providing a
distribution over actions in every state. The optimal policy results
in long-term behavior as close to the target distribution as possible.

Any MDP can be converted into a TTD-MDP. We can simply roll
the history of the MDP states into the TTD-MDP trajectories, re-
sulting in a TTD-MDP where each trajectory represents a sequence
of states in the underlying MDP. The trajectory space of the TTD-
MDP forms a tree. We state the TTD-MDP equation as:

P(t)= > (P(tla,t')- P(alt) - P(t') M)

YacA,,

For every partial or full trajectory t, the transition probability P(t|a, t")

is nonzero for exactly one ¢’ C t that is its prefix. Thus, the summa-
tion must only account for possible actions that can be taken in the
prefix trajectory rather than actions in multiple MDP states. Fur-
ther, each trajectory has a fixed length and can therefore appear at
only one specific time. For a complete introduction to TTD-MDPs,
see [8].

3. DESIGNING TOUR GUIDES
3.1 Modeing a Museum

We model a museum as a 4x5 grid with walls preventing cer-
tain transitions and where some of the rooms contain objects of
particular interest (like famous works of art) that represent poten-
tial goals of museum visitors. A trajectory through this grid world
models a tour through a museum. Therefore, we consider trajec-
tories to be sequences of rooms. There is an entrance where all
trajectories through the museum begin and a gift shop where all
trajectories end. We also model the visitor capacity of each room in
the museum. When above capacity, a room becomes congested—
decreasing visitors’ enjoyment. Thus, a tour is represented by a se-
quence of (z,y, ¢) coordinates that indicate the rooms visited and



whether they were congested during the visit. For example, one
tour might be {(0, 0, false), (0,1, true), (1,1, false),...}.

We assume that through visitor input, RFID localization, or some
other means, the tour guide agent can detect its current room. Fur-
ther, we assume the agent can communicate locally with other agents
to determine the congested state of the closest neighboring rooms.

3.2 Tour Probabilities

When using traditional MDPs, the designer achieves a desired
behavior by selecting an appropriate reward signal. With TTD-
MDPs, the designer achieves a desired behavior by properly select-
ing a target probability distribution over trajectories.

In the museum domain, we 1) define a distance metric between
tours, and 2) pick a set of prototypical “good” tours. Combining
the distance metric with these prototype induces a target probabil-
ity distribution over all tours. In our case, we define a Gaussian
mixture model over the set of prototypical tours with a distance
metric based on Levenshtein distance or edit distance [5, 6]. Be-
cause this model is well defined for all possible trajectories, the tour
guide can always make an intelligent decision even if the visitor has
wandered far from the set of prototype tours.

4. MODELING VISITORS

We assume that different types of museum visitors have differ-
ent goals, or known artworks that they wish to see. Therefore, we
explicitly model locations in the museum as goals and model the
visitors’ transitions as preferring to visit those goals. There are
many types of visitors to museums, and they likely have varying
sets of goals and varying willingness to follow the suggestions of
tour guides. Therefore, we model visitors in three dimensions: 1)
first time or returning visitor, 2) how much they know about art,
and 3) willingness to follow tour guide suggestions.

These three dimensions yield numerous instantiations of visitor
models. Specifically, we have a naive visitor type intended to repre-
sent a tourist that has little knowledge of art and knows mainly what
they might have read in a popular guide book, and an informed vis-
itor type that knows more about what the museum has to offer and
has a larger number of goals. Additionally, we have a new visitor
variant that has no completed goals when entering the museum, and
a returning visitor variant that has already realized some percent-
age of the possible goals available to them. Lastly, we have four
“levels” of willingness to follow guide suggestions. First, we have
ignore, where the visitor does not follow tour guide suggestions.
Second, we have possibly and probably visitors that follow the tour
guide suggestions a given percentage of the time. These are likely
more accurate models of visitor behavior. Lastly, we consider a
visitor variant that will definitely follow tour guide suggestions, re-
gardless of its own goals.

We classify visitors into new vs. returning and naive vs. in-
formed before they start a tour, and we use TTD-MDPs specially
trained on the appropriate combinations. The probabilistic policy
of a TTD-MDP provides a good tour for each visitor that we hope
will minimize both the number of goals that are not satisfied and
the parts of the museum that are repeated or congested. Training on
general classes of visitors allows us to avoid fully modeling every
visitor’s history of visits and preferences, which provides a notable
computational advantage.

5. RESULTS

Here, we summarize the results obtained for a number of exper-
iments. We present data to illustrate the effects of using a TTD-
based tour guide on congestion and closeness to targeted tours. For
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Figure 1: Distribution of Trajectory Edit Distance for Informed
Visitors with and without TTD-based Guides.
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Figure 2: Frequency of Congestion for Naive Visitors with and
without TTD-based Guides.

the experiments we present below, we assume that the visitors have
limited time. Specifically, they take tours of no more than 10 steps.
Experiments were run using all combinations of visitor types, and
experiments were run to test various characteristics of the resulting
tours; however, due to space limitations we cannot provide all of
the details in this paper. Instead, we have opted to discuss some of
the more intuitive findings for some of the visitor types. We leave
more complicated results and discussion for future publications.

In our model, prototype tours represent a hypothetical museum
curator’s view of what makes a good tour. Thus, it makes sense to
examine how closely visitors have followed those prototypes. In
Figure 1, we plot a tour “edit distance histogram” for the informed
visitor model—visitors with many goals—both new and returning
with and without the benefit of a TTD-based tour guide. The data
for this plot was obtained from experiments run with a low goal
density, a room capacity of four visitors (beyond which congestion
occurs), and visitors with a fairly low probability of accepting tour
guide suggestions (the possibly visitor category). In the low density
case, visitors choose from half as many goals as in the high density
case. Notice the relative shape of the distribution of distances for
the trajectories obtained using the TTD-based tour guides (i.e. a
Gaussian that has been cut in half). This illustrates that despite the
relative lack of cooperativeness of this visitor type, we still see a
distribution over distance that roughly matches the shape we desire
and expect from our mixture of Gaussians model. The data for the
informed visitor without the tour guide does not exhibit this behav-
ior. The dips at distance three and six in this plot are attributable to
the structure of the museum, location of goals within the museum,
and the set of prototype tours.

In Figures 2 & 3, we examine the frequency of congested rooms.
In Figure 2, we compare the congestion rates experienced by the
naive visitor model—visitors with few goals—in trials both with
and without the benefit of the TTD-based guide. Note the relative
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Figure 3: Frequency of Congestion for Informed Visitors with
Varying Willingness to Follow the Guide’s Suggestions.

position of the curves for the trails with and without the guides.
Visitors with guides experienced less congestion, with a histogram
peak at 0 congested rooms, instead of 2 for visitors without a guide.

Thus far, we have highlighted the relationship between visitors
with no tour guide and those most unwilling to follow the sugges-
tion of a guide. Consider Figure 3, where this unwilling visitor is
compared to more willing variants. Here, we see that all visitors ex-
hibit the “half-Gaussian” shape noted previously, but the curves for
the visitors who listen to their guides have lower variance than the
curves of those who do not. Thus, those who listen to their guides
trend toward experiencing less congestion. Furthermore, in gen-
eral we see the desired changes to the shape of the half-Gaussian in
response to varying parameters.

Our presentation of results in this paper is brief due to space
constraints; however, in other experiments, we found that there is a
trade off to be made between authorial control (i.e. reduced conges-
tion) and player satisfaction (i.e. goal satisfaction). The majority of
these results are discussed in a longer version of this paper [2].

6. RELATED WORK

Much of the work related to TTD-MDPs can be grouped into two
categories: drama management and probabilistic polices for MDPs.
Work on tour guides is based mainly in the robotics and ubiquitous
computing communities. The technical issues that arise in those
communities are generally orthogonal to ours.

6.1 TTD-MDP Related Work

Using a drama manager to guide interactive entertainment was
first proposed in 1986 by Laurel [4], formalizing the idea of an
agent directing action in response to visitor’s actions. The inspira-
tion for TTD-MDPs was based on a particular formalism for drama
management proposed by Bates [1]. It was later formulated as a
search problem by Weyhrauch [9] using an expecti-max game tree
like search over plot point sequences, and then reformulated as a
reinforcement learning problem by Nelson et.al. [7]. That work
led directly to the development of TTD-MDPs to enable variety of
experience while preserving authorial intent.

6.2 Robotic Tour Guides

As robotic technology has become increasingly accessible, re-
searchers have begun to focus on robot-human interaction in social
environments. In particular, one line of research involves the cre-
ation of sophisticated robotic tour guides that greet visitors, enter-
tain them with antics or conversation, and lead them to their desti-
nation (see Kim et. al. [3], for example). In work on robotic tour
guides, however, the specific tours given are fixed ahead of time
and the autonomy of the tour taker is not considered.

7. CONCLUSION

Our autonomous tour guides dynamically construct personalized
tours online in response to visitor’s reactions to their suggestions.
In this paper, we have presented results that show that the tours
experienced by visitors who use these autonomous tour guides tend
to both contain fewer congested rooms and remain closer to the
prototype tours than those experienced by visitors who do not use
the guides. Additionally, we find that our prototype-based mixture
of Gaussians model allows for visitor autonomy while still resulting
in a distribution of tours similar to the class of desirable “good”
tours.
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